互换娇妻爽文100系列电影,张娜拉自曝3年300多次,人妻洗澡被强公日日澡电影,妖精漫画免费登录页面入口大全

當前位置: 東奧會計在線 >  中級經濟師 >  金融 >  正文

利率決定理論_2023年中級經濟師金融預習知識點

來源:東奧會計在線責編:孟凡瑩2022-12-08 10:26:07

北京

沖刺教輔

想要擁有從未擁有過的東西,就要嘗試做你從未做過的事情。2023年中級經濟師考試《經濟基礎知識》科目試題題型為單選、多選。 《專業知識和實務》科目試題題型為單選、多選及案例。下面東奧教研團隊為考生們帶來了《金融》科目的預習知識點,快快學起來吧。

利率決定理論_2023年中級經濟師金融預習知識點

【內容導航】

利率決定理論

【所屬章節】

一:利率與匯率

【知識點】

利率決定理論

一、利率的風險結構

債券的到期期限相同但利率卻不相同的現象稱為利率的風險結構

到期期限相同的債券利率不同,由3個原因引起,即:違約風險、債券的流動性和所得稅

違約風險

債務人無法按約付息或歸還本金的風險,它影響著債券的利率。債券違約風險越大,其利率越高

1)公司債券的利率往往高于同等條件下政府債券的利率

2)普通公司債券的違約風險比信用等級較高的公司債券的違約風險要大

【提示】地方政府債券的違約風險通常高于中央政府債券的違約風險

債券的流動性

資產能夠以一個合理的價格順利變現的能力,它是一種投資的時間尺度(賣出它所需時間)和價格尺度(與公平市場價格相比的折扣)之間的關系

1)國債的流動性強于公司債券

2)期限較長的債券流動性差,流動性差的債券,風險相對較大,利率水平相對較高

3)債券流動性越強,其利率越低

所得稅

1)同等條件下,具有免稅特征的債券利率低

2)在美國,市政債券的違約風險高于國債,流動性低于國債,但由于市政債券的利息收入是免稅的,長期以來,美國市政債券的利率低于國債的利率

二、利率的期限結構

具有相同風險、流動性和稅收特征的債券,由于距離到期日的時間不同,其利率水平也會有所差異,具有不同到期期限的債券之間的利率聯系被稱為利率的期限結構。目前,主要有以下幾種理論解釋利率的期限結構

預期理論

分割市場理論

流動性溢價理論

預期理論

內容

到期期限不同的債券之所以具有不同的利率,是因為在未來不同的時間段內,短期利率的預期值是不同的

1)長期債券的利率等于長期債券到期之前人們所預期的短期利率的平均值

2)長期利率的波動低于短期利率的波動

可以解釋

1)隨著時間的推移,不同到期期限的債券利率有同向運動的趨勢

2)如果短期利率較低,收益率曲線傾向于向上傾斜;如果短期利率較高,收益率曲線傾向于向下傾斜

無法解釋

分割市場理論可以解釋的內容

分割市場理論

內容

將不同期限的債券市場看作完全獨立和分割開來的市場。到期期限不同的每種債券的利率取決于該債券的供給與需求,其他到期期限的債券的預期回報率對此毫無影響。分割市場理論的假設條件是不同到期期限的債券根本無法相互替代

可以解釋

收益率曲線不同的形狀可由不同到期期限的債券的供求因素解釋。如果投資者偏好期限較短、利率風險較小的債券,分割市場理論就可以對典型的收益率曲線向上傾斜的原因做出解釋。通常情況下,長期債券相對于短期債券的需求較少,因此長期債券價格較低,利率較高,典型的收益率曲線向上傾斜

無法解釋

預期理論可以解釋的內容

流動性溢價理論(預期+分割市場)

內容

長期債券的利率應當等于兩項之和

1)長期債券到期之前預期短期利率的平均值

2)隨債券供求狀況變動而變動的流動性溢價

可以解釋

流動性溢價理論和期限優先理論解釋了下列事實:

1)隨著時間的推移,不同到期期限的債券利率表現出同向運動的趨勢

2)典型的收益率曲線總是向上傾斜的

3)如果短期利率較低,收益率曲線很可能陡峭地向上傾斜;如果短期利率較高,收益率曲線傾向于向下傾斜

無法解釋

——

(以上內容源自武小唐老師知識點筆記)

每天多一點點的努力,不為別的,只為了日后能夠多一些選擇,選擇自己喜歡的生活。備考2023年中級經濟師可以參考中級經濟師考試真題,勤做練習,腳踏實地方可有更大的突破。

(以上內容源自東奧武小唐老師講義,僅供考生學習使用,禁止任何形式的轉載)


+1
打印
2025年中級經濟師報名提醒
主站蜘蛛池模板: 平顶山市| 靖江市| 鱼台县| 定结县| 铜陵市| 平潭县| 铅山县| 台前县| 右玉县| 迭部县| 北流市| 宜宾市| 毕节市| 德格县| 额敏县| 石泉县| 富顺县| 天门市| 长兴县| 收藏| 佛山市| 玉山县| 方正县| 鹤山市| 尚义县| 宽甸| 镇巴县| 新丰县| 阿瓦提县| 会泽县| 石台县| 永德县| 时尚| 南丹县| 星子县| 台南县| 巴塘县| 苗栗县| 寿宁县| 华宁县| 天镇县|